2,383 research outputs found

    Diapycnal diffusivity and transport of matter in the open ocean estimated from underway acoustic profiling and microstructure profiling

    Get PDF
    Accompanying to a large scale tracer release experiment (GUTRE) at the oxygen minimum zone (OMZ) off West Africa, microstructure measurements have been performed during two cruises to independently estimate diapycnal diffusion and fluxes of matter across the OMZ's upper limit. The vessel mounted Acoustic Doppler Current Profilers have been used in this context to get underway estimates of finescale shear and allow to infer diapycnal diffusivity K indirectly. In this way the regional integral K for the depth range of OMZ upper half and tracer location (150m to 400m) has been determined to K = 1.2*10^{-5} +- 0.2*10^{-5} m^2/s. This is a slightly higher value than expected for these latitudes and probably is caused by bottom topographic influence. The influx of oxygen brought by zonal jets and then diapycnally transferred to the OMZ has been estimated as 1.7 +- 0.2 mmol/m^3/a and thus is deemed to resupply a substantial part of the oxygen consumption in the upper half of the OMZ

    An acoustic view of ocean mixing

    Get PDF
    Knowledge of the parameter K (turbulent diffusivity/"mixing intensity") is a key to understand transport processes of matter and energy in the ocean. Especially the almost vertical component of K across the ocean stratification (diapycnal diffusivity) is vital for research on biogeochemical cycles or greenhouse gas budgets. Recent boost in precision of water velocity data that can be obtained from vessel-mounted acoustic instruments (vmADCP) allows identifying ocean regions of elevated diapycnal diffusivity during research cruises - in high horizontal resolution and without extra ship time needed. This contribution relates acoustic data from two cruises in the Tropical North East Atlantic Oxygen Minimum Zone to simultaneous field observations of diapycnal diffusivity: pointwise measurements by a microstructure profiler as well as one integrative value from a large scale Tracer Release Experiment

    Current-eddy interaction in the Agulhas Return Current region from the seismic oceanography perspective

    Get PDF
    Interleaving in the Agulhas Return Current (ARC) frontal region is commonly manifested in the form of thermohaline intrusions, as sub-tropical and sub-polar water masses of similar density meet. In Jan/Feb 2012, the Naval Research Laboratory and collaborators carried out a field experiment in which seismic and traditional hydrographic observations were acquired to examine frontal zone mixing processes. The high lateral resolution (10 m) of the seismic observations allowed fine-scale lateral tracking of thermal intrusions, which were corroborated with simultaneous XBT casts. Between seismic deployments both salinity and temperature data were acquired via CTD, Underway-CTD and microstructure profiles. This study focuses on analyzing seismic reflection data in a particular E-W transect where the northward flowing ARC interacted with the southward flowing portion of a large anticyclonic eddy. Strong reflectors were most prominent at the edge of a hyperbolic zone formed between the eddy and ARC, where sub-polar waters interacted with waters of sub-tropical origin on either side. Reflectors were shallow within the hyperbolic zone and extended to 1200 m below the ARC. The nature of the observed reflectors will be determined from comparison of seismic reflection and derived ∂T/∂z fields, and XBT and TS profiles from the available hydrographic data

    Diapycnal oxygen supply to the tropical North Atlantic oxygen minimum zone

    Get PDF
    The replenishment of consumed oxygen in the open ocean oxygen minimum zone (OMZ) off northwest Africa is accomplished by oxygen transport across and along density surfaces, i.e. diapycnal and isopycnal oxygen supply. Here the diapycnal oxygen supply is investigated using a large observational set of oxygen profiles and diapycnal mixing data from years 2008 to 2010. Diapycnal mixing is inferred from different sources: (i) a large-scale tracer release experiment, (ii) microstructure profiles, and (iii) shipboard acoustic current measurements plus density profiles. From these measurements, the average diapycnal diffusivity in the studied depth interval from 150 to 500m is estimated to be 1×10−5 m2 s−1, with lower and upper 95%confidence limits of 0.8×10−5 m2 s−1 and 1.4×10−5 m2 s−1. Diapycnal diffusivity in this depth range is predominantly caused by turbulence, and shows no significant vertical gradient. Diapycnal mixing is found to contribute substantially to the oxygen supply of the OMZ. Within the OMZ core, 1.5 μmol kg−1 yr−1 of oxygen is supplied via diapycnal mixing, contributing about one-third of the total demand. This oxygen which is supplied via diapycnal mixing originates from oxygen that has been laterally supplied within the upper CentralWater layer above the OMZ, and within the Antarctic Intermediate Water layer below the OMZ. Due to the existence of a separate shallow oxygen minimum at about 100m depth throughout most of the study area, there is no net vertical oxygen flux from the surface layer into the Central Water layer. Thus all oxygen supply of the OMZ is associated with remote pathways

    Fluorescence-Based Quasicontinuous and In Situ Monitoring of Biofilm Formation Dynamics in Natural Marine Environments

    Get PDF
    Analyzing the dynamics of biofilm formation helps to deepen our understanding of surface colonization in natural environments. While methods for screening biofilm formation in the laboratory are well established, studies in marine environments have so far been based upon destructive analysis of individual samples and provide only discontinuous snapshots of biofilm establishment. In order to explore the development of biofilm over time and under various biotic and abiotic conditions, we applied a recently developed optical biofilm sensor to quasicontinuously analyze marine biofilm dynamics in situ. Using this technique in combination with microscope-assisted imaging, we investigated biofilm formation from its beginning to mature multispecies biofilms. In contrast to laboratory studies on biofilm formation, a smooth transition from initial attachment to colony formation and exponential growth could not be observed in the marine environment. Instead, initial attachment was followed by an adaptation phase of low growth and homogeneously distributed solitary bacterial cells. Moreover, we observed a diurnal variation of biofilm signal intensity, suggesting a transient state of biofilm formation of bacteria. Overall, the biofilm formation dynamics could be modeled by three consecutive development stages attributed to initial bacterial attachment, bacterial growth, and attachment and growth of unicellular eukaryotic microorganisms. Additional experiments showed that the presence of seaweed considerably shortened the adaptation phase in comparison with that on control surfaces but yielded similar growth rates. The outlined examples highlight the advantages of a quasicontinuous in situ detection that enabled, for the first time, the exploration of the initial attachment phase and the diurnal variation during biofilm formation in natural ecosystem
    • …
    corecore